Amyloid and Tau PET for Predicting Progression in Alzheimer’s Disease

Adam S Fleisher, MD; Michael D Devous Sr, MD; Michael J Pontecorvo, PhD; Mark A Mintun MD
Disclosures

♦ Employee of and minor stockholder of Eli Lilly and Company

♦ Funded by Eli Lilly and Company and/or one of its wholly owned subsidiaries

CME credit CANNOT be offered for this presentation due to content according to ACCME rules
Potential Roles of Amyloid and Tau PET in Predicting Progression in AD

♦ Prognostic indicators
 • Diagnostic accuracy?
 • Tracking disease progression?

Amyloid PET

Healthy Control

Alzheimer’s Disease

Tau PET

Diagnostic Accuracy

Tracking Progression

Copyright© 2016 Eli Lilly and Company
Amyloid and Tau PET Imaging – a Dynamic Duo!
Amyloid Deposition Influences Cognitive Decline at 36 Months

Doraiswamy PM et al. Mol Psychiatry 2014;19(9):1044-51

Copyright© 2016 Eli Lilly and Company
Predicting Alzheimer Disease with β-Amyloid Imaging: Results from the Australian Imaging, Biomarkers, and Lifestyle Study of Ageing

Progression KEY (left → right)

- **HC**
- **MCI**
- **HC → MCI**
- **HC/ MCI → AD**
- **HC/ MCI → non-AD** (black)
- Positive control*

*For comparison, the SUVr values for all subjects with AD at enrollment into the AIBL study of ageing are shown (red triangles) [11C] Pittsburgh compound B SUVr values by baseline clinical diagnosis and status after 3 years.

AIBL=Australian Imaging, Biomarkers, and Lifestyle; AD=Alzheimer's disease; HC=healthy controls; MCI=mild cognitive impairment; PPV=positive predictive value

Copyright© 2016 Eli Lilly and Company
Cortical Amyloid is Associated with Increased Annual Rate of Global Atrophy in Cognitively Normal Individuals

Conclusions:
• In CN older adults is Aβ+ is associated with subtle cognitive impairment and decline
• Meta-analysis (of longitudinal studies) show association of Aβ+ with impairments in domains of semantic memory, visuospatial function, episodic memory, and global cognition. But, effect sizes are small.
• No Aβ related decline observed for working memory, processing speed or executive function

Cohen’s d with 95% CI
Dotted lines represent no effect of amyloid on cognition. Negative values represent greater decline in performance in the presence of high Aβ, size of dots represents study weighting due to sample size
Aβ=amyloid beta; CN=cognitively normal
Tau PET Patterns may distinguish different tauopathies and clinical phenotypes

PSP vs AD

Clinical Variants of AD

And……..tau PET tracers vary in their specificity to AD

Figure 1. Regional and Vertexwise Associations Between [18F]-AV-1451 Binding and Cortical Thickness

A AD cortical signature

B Cortical mantle

Pearson correlation between [18F]-AV-1451 binding and cortical thickness was assessed for each region of interest that composed the Alzheimer disease (AD) cortical signature (A) and each vertex across the cortical mantle (B). The regional correlation coefficients are showed with a bar graph in an order that is consistent with the hypothetical sequence of neurofibrillary tangles spreading. The color-coded anatomic location of AD cortical signature regions is labeled in the bar graph accordingly. The significance of vertexwise correlation was thresholded at $P < .05$, corrected for multiple comparisons at the cluster level. Both AD cortical signature regions and vertexwise correlation are displayed on the semi-inflated cortical surface of the FreeSurfer average brain, with light gray regions representing gyri and dark gray regions representing sulci.

Tau PET Better Predicts Cognitive Performance compared to Amyloid (Cross-sectional data)

Regions with negative values (cooler colors) are where more PET pathology predicts lower cognitive performance
*total predictive weight values for tau (left) and Aβ (right) are shown
Visuospat = visuospatial

Copyright© 2016 Eli Lilly and Company
Subjects were recruited as healthy controls (HC), patients diagnosed with mild cognitive impairment (MCI) and possible or probable AD (AD) dementia.

The following evaluations were performed at baseline, 9-month, and 18-month visits:

- 18F-Flortaucipir (18F-AV-1451) scan (10 mCi IV, scanning 80- to 120-min p.i. as 4 x 5 min frames)
- MRI (volumetric T1-weighted scan)
- Cognitive (ADAS, MMSE) and Functional (FAQ) scales

All subjects underwent a single Florbetapir F 18 scan and ApoE genotesting at baseline.
10 Baseline Subject Characteristics of Interim Analysis Population
Flortaucipir SUVR by Age: All Subjects at Baseline, 9-Month and 18-Month Visits
Flortaucipir SUVR Change at 18-Month Visit vs Baseline, MCI + AD
Correlation between 18F AV-1451 and Factor Scores
86 Aβ+ subjects (age = 74 ± 9); Inverse Correlations
Individual Subject Average Neocortical Flortaucipir SUVr Values
Amyloid/Tau PET vs Cognition Correlations

Baseline correlations are modeled to adjust for effects of age, and for 18-month change data models include both age and baseline cognition, results are presented for amyloid positive subjects.
Cognitive Change as a Function of Amyloid and Tau (+/-)
Diagnostic Accuracy Summary

<table>
<thead>
<tr>
<th>Amyloid PET</th>
<th>Tau PET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic Accuracy</td>
<td>Diagnostic Accuracy</td>
</tr>
<tr>
<td>♦ Has a truth standard (autopsy) ✓</td>
<td>♦ Lacks truth standard X</td>
</tr>
<tr>
<td>♦ Independently valuable for ruling out AD ✓</td>
<td>♦ Independently valuable for diag ✓/ X</td>
</tr>
<tr>
<td>♦ With caveats</td>
<td>♦ AD specificity may vary by tracer</td>
</tr>
<tr>
<td></td>
<td>♦ Interpretation is more dependent on understanding regional patterns</td>
</tr>
</tbody>
</table>
Tracking Disease Progression

Summary

<table>
<thead>
<tr>
<th>Amyloid PET</th>
<th>Tau PET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking Disease Progression</td>
<td>Tracking Disease Progression</td>
</tr>
<tr>
<td>♦ Global plaque load is associated with increased rate of brain atrophy ✓</td>
<td>♦ Regional binding associated with incr rate of regional brain atrophy ✓</td>
</tr>
<tr>
<td>♦ Better in preclinical/early AD? ✓</td>
<td>♦ Better in later/sympt stage of AD? ✓</td>
</tr>
<tr>
<td>♦ Presence of amyloid is a weaker predictor of cognitive change ✓</td>
<td>♦ Stronger predictor of cog decline ✓</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Cognitive decline may be driven by tau X</td>
<td></td>
</tr>
<tr>
<td>Amyloid → Tau → decline</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

Both Amyloid and Tau PET are valuable as predictors of future cognitive decline
- Amyloid PET is *foretelling* of future neurodegeneration and tau pathology even in the absence of cognitive symptoms
- Tau PET is suggestive of existing regional neurodegeneration and the presence of associated cognitive symptoms

This suggests
- Amyloid may have more value in the earlier stages of disease for secondary prevention and diagnosis
- Tau may be more valuable for staging symptomatic disease, understanding its course, and predicting future cognitive course

Combining Amyloid and Tau PET may be ideal for defining the overall AD disease state, providing complementary information to inform future decline.
Acknowledgements

This work would not be possible without the dedication of research volunteers and all study site investigator teams.