Impairment of glymphatic function in the aging brain and Alzheimer's disease

Jeffrey Iliff, PhD Department of Anesthesiology and Perioperative Medicine Oregon Health & Science University Portland, OR USA

Aging is inseparably tied to Alzheimer's disease

- Risk doubles every 5 years over age 65.
- Incidence approaches 40% among subjects
 >85 years of age.

The cerebrospinal fluid (CSF) circulation

No lymphatic vessels in the CNS

CSF is secreted at the choroid plexuses within the cerebral ventricles

CSF serves as a 'sink' for CNS waste products

Diffuse bulk flow facilitates exchange of CSF and ISF

Reabsorption at arachnoid villi

The cerebrospinal fluid (CSF) circulation

No lymphatic vessels in the CNS

CSF is secreted at the choroid plexuses within the cerebral ventricles

CSF serves as a 'sink' for CNS waste products

Diffuse bulk flow facilitates exchange of CSF and ISF

Reabsorption at arachnoid villi

From Louveau et al. Nature 2015

From Nedergaard Science 2014

A brain-wide perivascular pathway for CSF-ISF exchange

CSF Tracer (BSA-488) 30min post-injection

lliff, Thrane and Nedergaard 2016

A brain-wide perivascular pathway for CSF-ISF exchange

CSF Tracer (BSA-488) 30min post-injection

lliff, Thrane and Nedergaard 2016

A brain-wide perivascular pathway for CSF-ISF exchange

In vivo 2-photon microcopy 2-Photon

> TR-d70 (iv tracer) FITC-d40 (CSF tracer) 1 frame = 1min

Cortical Surface

lliff et al. Sci Transl Med 2012

Imaging brain-wide glymphatic function by dynamic contrast-enhanced (DCE)-MRI

Roese and Pike 2016

- Adult Male SD Rats
- DCE-MRI (11.7T)
- Intracisternal gadoteridol infusion
- Time Post-Injection: 0-60 min 60-120 min 120-180 min

Imaging brain-wide glymphatic function by dynamic contrast-enhanced (DCE)-MRI

Roese and Pike 2016

- Adult Male SD Rats
- DCE-MRI (11.7T)
- Intracisternal gadoteridol infusion
 - **Post-Injection:** 0-60 min 60-120 min 120-180 min

A perivascular pathway for CSF-interstitial fluid exchange --- the "glymphatic" system

- CSF re-circulates along perivascular spaces surrounding arteries.
- Interstitial solutes are cleared along perivascular spaces surrounding large draining veins.
- Soluble amyloid β and tau are cleared along this paravascular pathway.

A word about amyloid β and sleep

Sleep modulates interstitial amyloid β levels

Kang et al. Science 2009

Sleep modulates interstitial amyloid β levels

Kang et al. Science 2009

Lucey et al. JAMA Neurol 2016

Sleep modulates interstitial A β levels and A β aggregation

Kang et al. Science 2009

Does perivascular CSF-ISF exchange differ between sleeping and waking?

Perivascular CSF recirculation is modulated by sleep state

Awake

Perivascular CSF recirculation is modulated by sleep state

Awake

Anesthetized

Perivascular CSF influx is a feature of the sleeping brain

Amyloid β is cleared more rapidly from thesleeping brainInterstitial ¹⁴C-Inulin clearance

Interstitial ¹²⁵I-Amyloid β_{1-40} clearanece

Is perivascular CSF-ISF exchange impaired in the aging brain?

Impairment of CSF recirculation in the aging brain

Kress, Iliff et al. Annals Neurol 2014

Impairment of CSF recirculation in the aging brain

Reduced diurnal fluctuation in CSF AB in the aging human CNS

Lucey et al. JAMA Neurol 2016

What factors are changing in the aging brain that may underlie these effects?

Aquaporin-4 (AQP4) organizes water movement throughout the brain

Adapted from Simard et al. J Neurosci 2003

AQP4 supports perivascular CSF recirculation and amyloid β clearance

Wild Type

lliff et al. Sci Translat Med 2012

AQP4 supports perivascular CSF recirculation and amyloid β clearance

Interstitial Tracer ³H-Mannitol

Perivascular AQP4 localization is lost in the aging brain

AQP4 polarization supports perivascular CSF-ISF exchange Wild Type Sonta1-1-

Dystrophin-Associated Complex

Simon, Zeppenfeld 2016

AQP4 polarization supports perivascular CSF-ISF exchange Wild Type Sonta1-1-

Are changes in AQP4 localization associated with Alzheimer's pathology?

Patterns of AQP4 localization are altered in the aging human cortex

Patterns of AQP4 localization are altered in the aging human cortex

0

2

Braak Stage

6

2 **Amyloid Plaque Density**

0.9

Young

Aged

AD

Are naturally-occurring variants in the human AQP4 gene associated with cognitive decline?

SNPs in human AQP4 gene are associated with altered rates of cognitive decline

	Name	rs9951307	rs3875089	rs335929	rs3763040	rs3763043
Functional	MMSE	1.10	3.96 ***	-1.35	-3.10 **	-5.63 ***
	CDR	-0.85	6.20 ***	-4.74 ***	-4.43 ***	-0.08
Memory-Based Executive Function	MemoryZ	1.54	0.08	2.59 **	0.31	-0.61
	Logical Memory	3.00 **	-0.37	3.87 ***	-0.34	-3.49 ***
Attention-Based Executive Function	AttentionZ	-0.02	-0.63	2.34 *	-0.70	-0.93
	Digit Symbol	0.45	-0.74	2.56 *	0.36	-2.51 *
Executive	Trails B	2.34 *	-1.84	-1.01	0.55	-1.56

Kevin Burfeind, Chad Murchison 2016

Glymphatic pathway

- Brain-wide perivascular network
- Feature of the sleeping brain
- Dependent upon astroglial water transport
- Impaired in the aging rodent brain
- AQP4 mis-localization associated with Alzheimer's pathology
- Human AQP4 gene variants modify rate of cognitive decline in Alzheimer's disease.

Glymphatic dysfunction appears to occur in many disease states, including traumatic and spinal cord injury.

From Nedergaard Science 2014

The Team

Thierno Madjou Bah Erin Boespflug Eugene Cilento Kevin Burfeind

Jim Goldman Carmen Methner Ali Picnus Natalie Roese Matt Simon Marquitta Smith Selda Yildiz Doug Zeppenfeld

Human Glymphatic Imaging Project

Bill Rooney, PhD Miranda Lim, MD, PhD Jeanne Link, PhD Joyce Mhlanga, MD Martin Pike, PhD Jeffrey Pollock, MD Lisa Silbert, MD Charles Springer, PhD James Stevens, MD

Department of Anesthesiology and Perioperative Medicine Marjorie Grafe, MD, PhD Lijunan Liu, DVM Xiao Jing Nie, MS

NIA Layton Aging and Alzheimer's Disease Center

Deniz Erten-Lyons, MD Jeffrey Kaye, MD, PhD Charles Murchison, MS Joseph Quinn, MD

Shawn Westaway, PhD Randy Woltjer, MD, PhD

Legacy Research Institute

Detlev Boison, PhD Zhongya Wang, PhD

<u>Funding</u>

NINDS (JI), NIA (JK), American Heart Association (JI), Oregon Partnership for Alzheimer's Research (JI), Paul G. Allen Family Foundation (JI, BR)

Evaluating glymphatic function in the human brain

Eide and Ringstad Acta Radiol Open 2015

Human ¹¹¹In-DTPA SPECT imaging suggests role for sleep in IT contrast distribution

From Glaubitt et al. AJNR 1983

Human ¹¹¹In-DTPA SPECT imaging suggests role for sleep in IT contrast distribution

From Horikoshi et al. Cephalalgia 2006)

Alzheimer's disease – An age-related disease with characteristic pathology and neuroanatomical spread

Mouse Cellular Taxonomy Data

DMD

Altered AQP4 and DAC protein expression inaggregation-prone brain regionsDystrophin-Associated
Complex

Jucker and Walker Nature

Altered AQP4 and DAC protein expression inaggregation-prone brain regionsDystrophin-Associated
Complex

Jucker and Walker Nature